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Abstract

Competitive protein adsorption plays a key role in the surface hemocompatibility of biological implants. We describe a quantitative chromatog-
raphy method to measure the coverage of multiple proteins physisorbed to surfaces. In this method adsorbed proteins are displaced by CHAPS
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(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and then analyzed by high performance liquid chromatography to se
quantify the individual proteins, in this case bovine serum albumin (BSA) and bovine fibrinogen (Fg). CHAPS displaced over 95% of the
proteins and was easily removed from solution by dialysis. This method was tested by measuring the coverage of BSA, 66 kDa, and F
simultaneously adsorbed from solutions with concentration of 20�g/ml, on bare and dextranized silicon. Relative to silicon, the dextran
surfaces were found to strongly inhibit protein adsorption, decreasing BSA and Fg coverages by 76 and 60%, respectively.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Despite the numerous biomedical implants placed success-
fully into patients every year, a generally accepted single defini-
tion of biocompatibility for devices and indwelling biomaterials
has not yet been established. Ambiguity persists especially in
the definition of blood compatibility[1]. The surfaces of many
biomaterials and biomedical devices have been attributed to pro-
voking blood clotting, tissue inflammation, and infection, which
contribute to their failure[2]. The initial event in the foreign body
reaction stimulated by tissue contact with an implant is often a
massive inflammatory response in which competitive protein
adsorption takes place on the surface of the biomaterial. After
blood contacts a biomaterial, plasma proteins rapidly adsorb
onto the surface to form a monolayer of selected proteins. Albu-
min and fibrinogen are among those first molecules selectively
adsorbed, however their concentrations, as well as the concen-
trations of other adsorbed proteins, change with time. These
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surface adsorbed proteins compete for occupancy of the
material surface, and may become tightly packed, irrever
bound, and immobile[2]. Adsorbed proteins also undergo li
ited conformational changes that may expose “receptor” a
acid sequences that are recognized by specific blood ce
bulk plasma proteins. Monolayers of densely packed immo
plasma proteins become arranged in undefined mosaics tha
spatially and temporally. This multi-protein layer determines
further events in coagulation and cellular adhesion[1,2]. Fol-
lowing protein adsorption, the principal phenomena are b
coagulation, platelet adhesion and aggregation, and comple
activation leading to leukocyte aggregation.

Because of the importance and complexity of protein ads
tion on implants, several techniques have been develop
identify and quantify the type and amount, respectively
physisorbed proteins[3]. Traditional analytical methods to stu
protein adsorption typically use radioactive[4–11]or fluorescen
[12,13]labeled compounds, gel electrophoresis and immuno
analysis[14–18], total internal reflection fluorescence and
situ ellipsometry[19–21]. Radioactive and fluorescent lab
ing methods can be used to measure adsorption of two pro
simultaneously if different labels are used, but this techniq
1570-0232/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jchromb.2005.09.002
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mainly used to detect a single protein adsorbing out of a mix-
ture. One disadvantage is that labeling alters the protein struc-
ture and hence its adsorption behavior[22]. Recently, electron
spectroscopy for chemical analysis and time-of-flight secondary
ion mass spectrometry have been used to characterize surfaces
containing multiple types of adsorbed proteins[23,24]. These
methods are expensive, time consuming, and require specialized
technical expertise and/or equipment. Another major limitation
is their inability to quantify protein coverage from complex mix-
tures, rather they only provide semi-quantitative measures of
competitive adsorption.

High-performance liquid chromatography (HPLC) is now
firmly established as a premier technique for the analysis and
purification of a wide range of molecules. HPLC is highly
reproducible, easily manipulated for selectivity, and generally
provides high species recovery[25]. One objective of this
paper is to demonstrate the potential of HPLC as a tool to
investigate protein adsorption from multicomponent mixtures
onto biomaterial surfaces. HPLC chromatograms provide both
the qualitative (i.e., retention time) and quantitative (i.e., peak
area) information needed to analyze protein mixtures. With
regard to separation and quantification of several proteins
adsorbed on biomaterial surfaces, the main limitation of HPLC
is that it is an ex situ technique. Namely, all proteins must
be completely removed from the surface and then introduced
into the HPLC system. An important finding in our approach,
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Table 1
Physical properties of BSA and Fg

Protein Plasma
concentration
(mg/ml)

Mass
(kDa)

Size (nm) Volume
(nm3)

pI Reference

BSA 40 66 4× 3× 3 271 4.7 [13]
Fg 2–3 340 47× 5× 5 3645 4.3 [13]

surface for this experiment was obtained by oxidizing dex-
tran for 0.5 h prior to grafting on amino-functionalized silicon
[30]. Briefly, our dextran grafting procedure was developed on
single side polished silicon wafers cut into squares of approxi-
mately 1 cm2. However, this surface area is too small to adsorb
enough protein to be detected by HPLC which has a sensitiv-
ity determined by the efficiency of the UV detector, namely
about 1�g. To overcome this issue, we therefore adapted our
dextran grafting procedure[28–30]to double side polished sili-
con wafers which present a surface area of∼40 cm2 for protein
adsorption.

2.2. Materials

To prepare protein solutions and clean the experimental appa-
ratus only water from a Barnstead Mega-Pure® MP-1 water
purification system was used. Bovine serum albumin (BSA),
lyophilized, fatty acids- and globulin-free was obtained from
Sigma Chemical Co., USA, as was bovine fibrinogen (Fg) (frac-
tion I; >75% clottable protein). The proteins were used without
further purification. Single and mixed solutions of concentra-
tions ranging from 1 to 50�g/ml of both BSA and Fg were
prepared using 40 mM phosphate-buffer saline (PBS) at pH 7.0.
Analytical grade chemicals for the buffer preparation were used
without further purification. Physical properties relevant to the
proposed method are listed inTable 1. CHAPS (Sigma C3023)
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s that nearly 100% of the adsorbed proteins studied to
an be removed from surfaces by rinsing with CHAPS
(3-cholamidopropyl)dimethylammonio]-1-propanesulfona
hich is known as a surfactant that solubilizes memb
roteins while preserving their native structure[26]. Severa
ther detergents, including SDS, were investigated; how
HAPS proved to be the most versatile and efficient dete

or displacing a range of proteins.
In this paper, we will show that CHAPS displaces over 9

f two major plasma proteins, bovine serum albumin (BSA)
brinogen (Fg)[6,27], simultaneously adsorbed onto bare
extranized silicon wafer surfaces. Having established a
essful approach for displacing and recovering adsorbed
nd Fg on different surfaces, we then demonstrate a m

o separate and quantify the displaced proteins by gel filtr
PLC. In toto, this novel CHAPS/HPLC approach is use
emonstrate that dextranized silicon surfaces strongly in
rotein adsorption, relative to unmodified silicon, while p
rentially adsorbing BSA. These results suggest that de
oatings on blood-contacting biomedical implants provid
romising approach for reducing inflammatory response.

. Experimental

.1. Surfaces

We tested our CHAPS/HPLC method by measuring c
etitive protein adsorption on silicon wafers and biomime
extranized silicon wafers prepared in our laboratory. The de
egarding the preparation and characterization of these su
an be found in previous publications[28–30]. The dextranize
-
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nd SDS (sodium dodecyl sulfate, Sigma L6026) were test
urfactants to displace BSA and Fg from bare and dextra
ilicon surfaces. CHAPS was selected because, unlike S
id not interfere in the UV/HPLC detection of proteins.

.3. Methods

.3.1. CHAPS/HPLC method
A flow chart of the individual steps involved in t

HAPS/HPLC method is shown inFig. 1. After preparing sur
aces (step 1), proteins were adsorbed by immersing sampl
BS solution containing a mixture of BSA and Fg. After imm
ion for 1 h on a shaker at 37◦C in PBS containing 20�g/ml,
ach, of BSA and Fg, surfaces were then rinsed with PB
emove loosely bound proteins (step 2). Adsorbed proteins
luted from the surfaces by 1 h of immersion in 8 mM CHA
olution on a shaker at 37◦C (step 3). The eluted protein samp
step 4) were then dialyzed for 24 h at 4◦C in PBS (pH∼ 7.0)
eplaced four times to remove the CHAPS (step 5). The
les were frozen to−70◦C before being freeze-dried overnig
step 6). The displaced proteins were subsequently iden
nd quantified by HPLC (step 7), as described below.
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Fig. 1. Schematic of the newly developed HPLC method for the study of com-
petitive protein adsorption onto the surface of materials.

Chromatography analysis was conducted on a Beckman
Coulter System Gold® HPLC system running 32 KaratTM soft-
ware. The apparatus was comprised of a 126 pump model solvent
delivery module, a 168 programmable detector module, which is
a diode array UV–vis HPLC detector set at 210 nm wavelength
and a manual injector. Because BSA and Fg have similar iso-
electric points, pI = 4.7 and 4.3, respectively, but significantly
different molecular weights, 66 and 340 kDa (seeTable 1),
size exclusion chromatography (SEC) was used to identify and
quantify the proteins. SEC separates biomolecules based on dif-
ferences in their molecular size. To accomplish this we used a
bonded silica Bio-Sil SEC 250 column (Bio-Rad). The eluent
was a buffer composed of 0.05 M NaH2PO4, 0.05 M Na2HPO4,
0.15 M NaCl and having pH 6.8. The flow rate was set at
0.6 ml/min with a 200�l. injection volume. The elution spectra
of a 50/50 mixture of BSA and Fg are shown inFig. 2. The
data are plotted as absorbance at 210 nm,A210, versus retention
time in minutes. To identify the species,Fig. 2a compares the
spectrum of the 50/50 mixture (solid line) with a mixture of
five gel filtration standards (thyroglobulin,Mw 670 kDa; IgG,
Mw 158 kDa; ovalbumin,Mw 44 kDa; myoglobin,Mw 17 kDa;
vitamin B12, Mw 1.35 kDa). This comparison allows for the
identification of the main peaks at 11.9 and 16.5 min as Fg
(340 kDa) and BSA (66 kDa), respectively. The difference in
retention time,�t, between the two species is 4.6 min so, under

Fig. 2. SEC of a 50/50 mixture of BSA and Fg. (a) Comparison with the elu-
tion pattern of a mixture of five gel filtration standards ((1) thyroglobulin,Mw

670 kDa, (2) IgG,Mw 158 kDa, (3) ovalbumin,Mw 44 kDa, (4) myoglobin,Mw

17 kDa, (5) Vitamin B12,Mw 1.35 kDa). (b) Comparison with the elution pat-
terns of solutions containing BSA alone and Fg alone. Column and conditions
as described in the text.

these experimental conditions, the peaks for Fg and BSA are
readily separated.

In Fig. 2b, the spectrum of the 50/50 mixture of BSA and
Fg (dark solid line) is compared with that of pure Fg and pure
BSA. Structurally, Fg is a dimer, each half of which is com-
posed of three disulfide-bonded polypeptide chains designated
A�, B�, and� [3], whereas BSA consists of a single peptide
chain forming three small globular units[3]. We can assign the
strongest peaks at a retention times of 11.9 and 16.5 min to Fg in
its dimeric form and BSA in its monomeric form, respectively.
The weaker peaks near retention time of 14.9 min are attributed
to Fg molecules in monomeric or fragmental form and BSA
molecules in dimeric form[31]. In the current work the sec-
ondary peak appearing at a retention time of 14.9 min will not
be analyzed.

To quantify the amount of protein,A210 from known concen-
trations of Fg and BSA were measured.Fig. 3shows calibration
curves for both the Fg and the BSA main peaks. They were
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Fig. 3. SEC of a standard mixture of BSA and Fg: calibration curves. Column
and conditions as described in the text.

obtained by injecting fixed volumes of 50/50 mixtures of BSA
and Fg with concentrations ranging from 1 to 50�g/ml and mea-
suring the Fg and BSA peak areas. As an example, the elution
spectrums of 50/50 mixtures with concentrations of 1, 10, 30
and 50�g/ml are reported in the inset ofFig. 3.

Two factors determine the choice of detergent. As previously
noted, the detergent must displace nearly 100% of adsorbed pro-
teins. A second feature is that the detergent does not interfere
with the chromatography measurements of the desired proteins.

After investigating several detergents, CHAPS was found to
be the best choice because the concentration can be greatly
reduced by extensive dialysis against PBS buffer. As demon-
strated inFig. 4a, SDS (one possible detergent candidate) solu-
tions injected in the HPLC system show strong peaks between 13
and 17 min even after dialysis for 24 h at 4◦C in PBS (pH∼ 7.0)
replaced four times. In contrast, CHAPS solutions do not show
any strong peaks between 10 and 17 min after dialysis under
the same conditions (Fig. 4b). To allow a direct comparison of
the CHAPS and SDS adsorption peaks with those from the dis-
placed proteins, an elution pattern containing of both BSA and
Fg displaced from dextranized silicon (presented later inFig. 7)
is included inFig. 4a and b. As shown inFig. 4a the peaks
associated with BSA/Fg strongly overlap with the SDS peaks
both before (solid line) and after (dashed line) dialysis.Fig. 4b
shows that the CHAPS spectrum overlaps the BSA/Fg before
dialysis (solid line). However, following dialysis, the main peaks
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Fig. 4. Elution pattern of a 20 mM: (a) SDS and (b) CHAPS solution before
and after extensive dialysis against PBS buffer. Columns and conditions as in
Figs. 2 and 3.

2.3.2. Protein fluorescence measurements
To determine the efficacy of CHAPS solutions to displace

proteins from surfaces, fluorescence measurements of proteins
labeled with Oregon Green (OG) 488 dye (Molecular Probes,
Eugene, OR) were performed in separate tests. Solutions con-
taining either labeled BSA (20�g/ml) or Fg (20�g/ml) were
adsorbed onto silicon and dextranized silicon surfaces which
were placed in 12-well tissue culture plates (Corning Inc.,
Costar, NY) for 1 h on a shaker at 37◦C. The BSA and Fg
labeling and the quantification of labeled proteins on the sur-
faces were performed according to the method described by
Toworfe et al.[12]. The concentration and degree of labeling
was determined by transferring 100 ml of the BSA and Fg into
cuvettes (1 cm pathlength) for spectrophotometer readings of
the conjugate solutions at 280 and 496 nn. The optimum degree
of labeling for BSA and Fg is between 4 and 8 mol of Ore-
gon Green 488 dye/mol of protein (Molecular Probes). BSA
dimers, less than 10% of all the molecules, are not included
in the evaluation of the degree of labeling. BSA and Fg con-
centrations were determined using 4.70× 104 M−1 cm−1 and
5.12× 105 M−1 cm−1, respectively, as the molar absorptivities
of the proteins at 280 nm[33]. Fluorescence readings were per-
f Fg and BSA (i.e., between 10 and 17 min) are easily di
uished from the CHAPS spectrum (dashed line). Moreove
bsorbance from CHAPS over this time range is flat allow

or easy subtraction. Although CHAPS and SDS have sim
ritical micelle concentrations (7–10 mM[32]), their micellar
roperties are significantly different. CHAPS has an aggr

ion number of 4–14 and an average micellar molecular we
f 6000 Da whereas SDS has significantly larger values o
nd 18,000, respectively[32]. The large size of the SDS mice
ompared to CHAPS may explain why SDS is difficult to rem
y dialysis.
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formed in a microplate reader (ChameleonTM, Hidex, Finland)
at 485 nm excitation and 535 nm emission wavelengths, so that
the fluorescence of the solid surface, with the adsorbed labeled
proteins on it, was directly determined. After incubation, initial
fluorescence readings were recorded after washing substrates in
PBS to remove loosely bound proteins and prevent rebinding.
A second reading was recorded after the same substrates were
washed by 8 mM CHAPS solutions for 1 h on a shaker at 37◦C.
This procedure replicated the experimental conditions used in
the protein displacement step of the HPLC method (seeFig. 1).
A comparison between the two fluorescence readings allowed
for the determination of the efficiency of CHAPS at displacing
BSA and Fg from the surfaces.

3. Results

3.1. Protein displacement by CHAPS

Fig. 5shows the surface density (Γ ) of BSA (Fig. 5a) and Fg
(Fig. 5b) adsorbed from pure solutions on silicon and dextran-
modified silicon. Each value ofΓ is the average of three fluo-
rescence readings performed on five different surfaces. For each
surface, these readings were within 10% of each other.

F
(
s
(

After incubation for 1 h, the surface coverage of BSA was
360± 40 ng/cm2 on silicon and 100± 10 ng/cm2 on dextran-
coated silicon. The surface coverage of Fg was 550± 60 ng/cm2

on silicon and 150± 15 ng/cm2 on dextran-coated silicon fol-
lowing incubation. After washing with CHAPS, the surface
coverage of BSA was reduced to 11± 1 ng/cm2 on silicon and
5± 0.5 ng/cm2 on dextran-coated silicon. The surface coverage
of Fg decreased to 27± 3 ng/cm2 on silicon and 7± 1 ng/cm2

on dextran-coated silicon following CHAPS exposure. These
results indicate that CHAPS exposure displaced 95.0–96.9% of
adsorbed protein that remained after the initial PBS wash. These
findings also demonstrate that the effect of the dextran surface
coating reduces both BSA and Fg adsorption by approximately
72–73% with respect to bare silicon surfaces.

3.2. Surface coverage by CHAPS/HPLC method

Before analyzing competitive adsorption, CHAPS/HPLC
was initially used to determine single protein coverage on both
bare and dextranized silicon as shown inFig. 6. Each experi-
ment was repeated five times. The surface coverage of BSA was
400± 50 ng/cm2 on silicon and reduced to 120± 15 ng/cm2 on
dextran-coated silicon. Similarly, the surface coverage of Fg was
500± 130 ng/cm2 on silicon and reduced to 130± 16 ng/cm2

on dextran-coated silicon. The protein resistance of dextranized
silicon will be explored in an upcoming paper. These coverages
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ig. 5. Protein surface densityΓ on bare and dextranized silicon surfaces
adsorption from 20�g/ml solution) before and after washing by 8 mM CHAPS
olutions for 1 h at 37◦C, obtained using fluorescence method. (Top) BSA and
bottom) Fg.

F ces
( .
re in excellent agreement with those obtained by the flu
ence method shown inFig. 5, demonstrating the reliability o
he CHAPS/HPLC method.Fig. 7 shows representative e
ion patterns of mixed solutions comprised of both BSA
g following displacement from both bare and dextranized
on surfaces. The range of retention time (10–18 min) show
ig. 7a includes the appearance of both proteins. To accen

he smaller Fg peak, a narrow range of retention time, from
o 13 min, is plotted inFig. 7b. A standard chromatogram o
ulk mixture of Fg and BSA is also shown inFig. 7a and b.

Using the calibration data (e.g.,Fig. 3), the raw chromatogra
hy data were converted to BSA and Fg surface concentra
Γ ) for both substrates and plotted inFig. 8. The values ofΓ were

ig. 6. Single protein surface densityΓ on bare and dextranized silicon surfa
adsorption from 20�g/ml solution) obtained using CHAPS/HPLC method
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Fig. 7. SEC of mixtures of BSA and Fg displaced from bare and dextranized sil-
icon surfaces (for details see the text). Column and conditions as inFigs. 2 and 3.

Fig. 8. Protein surface density on bare and dextranized silicon surfaces (compe
itive adsorption from a mixture of BSA and Fg both at concentrations 20�g/ml).
Data obtained from the chromatograms inFig. 6 and the calibration curves in
Fig. 3.

determined to be 360± 40 ng/cm2 for BSA and 50± 5 ng/cm2

for Fg on silicon and 85± 9 ng/cm2 for BSA and 20± 2 ng/cm2

for Fg on dextranized silicon. The experiments were repeated
on five silicon and dextranized silicon surfaces.

From these competitive adsorption experiments, dextran
coatings are found to decrease total protein adsorption by 74.4%
compared to the bare silicon controls. The individual proteins
are observed to decrease by similar amounts, namely 76.4%
for BSA and 60.0% for Fg. Moreover, both surfaces after 1 h
show preferential adsorption of BSA from the mixed BSA/Fg
solution, with BSA accounting for 80.9 and 87.8% of the total
protein adsorbed onto the bare and dextranized surfaces, respec-
tively.

4. Discussion

Quantitative and selective methods are needed to interrogate
competitive protein adsorption to biomaterials, especially vas-
cular implants and other blood-contacting surfaces. Although
considerable experimental data are available on the kinetics of
irreversible protein adsorption, little is known about the selec-
tivity of proteins adsorbed on surfaces. Our approach, called
the CHAPS/HPLC method, provides quantitative analysis of
multiple proteins that have been adsorbed onto solid substrates.
Referring to the flowchart of CHAPS/HPLC illustrated inFig. 1,
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The physical properties of the particular proteins (BSA
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n the basis of their different molecular weights. We em
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ion-exchange and hydrophobic interaction chromatography, as
well as affinity chromatography. In general, HPLC encom-
passes a highly versatile set of separation techniques that can
be chosen depending on the properties of the proteins of
interest.

A key step in the CHAPS/HPLC method was the identifi-
cation of CHAPS as a facile, efficient detergent for displacing
adsorbed proteins. At least 95% efficiency in displacing pro-
teins was achieved without any demonstrable interference with
the UV detection of the proteins after injection in the HPLC sys-
tem. Although CHAPS shows adsorption peaks in the 10–18 min
retention region (i.e., BSA + Fg region, seeFig. 4b), it is easily
removed from solution by dialysis against PBS buffer.Fig. 4b
shows that, following dialysis, CHAPS-related peaks are no
longer present in the retention time range for the elution of
BSA and Fg. Thus, the BSA/Fg spectrum will not be con-
founded by the presence of CHAPS. After ensuring removal of
surfactant, the efficiency of CHAPS to displace BSA/Fg from
both surface types needed to be demonstrated. Using an estab-
lished fluorescence technique to measure protein adsorption
from single-component solutions[12], the surface concentra-
tion of adsorbed BSA and Fg was quantified on both surfaces
before and after washing with CHAPS. This protocol employed
the same experimental conditions used for protein removal prior
to HPLC quantification. The results from these parallel experi-
ments confirmed that less than 5% of the total adsorbed protein
r
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Despite these limitations, the CHAPS/HPLC method
described herein is a powerful tool for studying the complex
interactions between multicomponent mixtures of proteins and
the surfaces of biomaterials and biological implants. Because
this method provides a quantitative measure of protein adsorp-
tion, it can be used to screen the biocompatibility of material sur-
faces which are candidates for biomedical devices or indwelling
materials. A major strength of CHAPS/HPLC is that it is the
first technique that is both quantitative and selective. While the
pilot studies in this paper demonstrate proof of concept using
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for the study of competitive adsorption of mixtures containing
three or four proteins (e.g., fibronectin, von Willebrand factor,
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detergents may be necessary for new combinations of proteins
and surfaces.
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By comparison, protein adsorption on dextranized silicon is
greatly reduced. Dextrans are known to show very low non-
specific interactions with proteins[37] and dextran coatings
reduce protein adsorption at surfaces enhancing biocompati-
bility [38–40]. For the first time, this study shows that BSA
preferentially absorbs to dextran, relative to Fg. This result is
important because polymers capable of preferentially adsorbing
BSA are thought to be less thrombogenic than those enriched in
Fg. For example, albumin coated surfaces have been shown to be
inert to platelets, whereas fibrinogen enhances platelet adhesion
and aggregation[41]. The findings in our paper suggest that
dextran-based coatings are advantageous for blood-contacting
medical devices, especially when fibrinogen-inert surfaces are
required such as in vascular applications[41].
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